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The asymptotic behaviour of the Charlier polynomials C (a)
n (x) as nQ. is

examined. These polynomials satisfy a discrete orthogonality relation and, unlike
classical orthogonal polynomials, do not satisfy a second-order linear differential
equation with respect to the independent variable x. As such, previous results on
their asymptotic behaviour have been restricted to integral methods and conse-
quently have been quite limited in their scope. In this paper a new approach is used,
where the polynomials C (a)

n (x) are not regarded as a functions of x with a as a
parameter, but rather with the roles reversed via a second-order linear differential
equation in which a is the (real or complex-valued) independent variable and x is a
parameter. This equation has two turning points in the a plane which depend on x,
and are either positive or complex conjugates, according to the values of x. More-
over, the turning points can coalesce with one another, or one with a singularity of
the equation, for certain critical values of x. By using two general asymptotic
theories of differential equations, one for intervals free of turning points and the
other for intervals containing a double pole and a coalescing turning point, expan-
sions are derived for C (a)

n (x) involving either elementary functions or Bessel func-
tions. Taken together, the results are uniformly valid for −. < x <.. In addition,
in each case the expansions are uniformly valid for a lying in certain unbounded
intervals, each of which contain [−{1−d} n, {1−d} n], where d ¥ (0, 1) is an
arbitrary constant. © 2001 Academic Press

1. INTRODUCTION

In this paper we examine the asymptotic behaviour, as nQ., of the
Charlier polynomials, which are defined by

C (a)
n (x)=C

n

k=0

Rn
k
S Rx

k
S k!(−a)n−k.(1.1)



The polynomials are generated by

e−aw(1+w)x=C
.

n=0
C (a)

n (x)
wn

n!
(1.2)

and are important because they satisfy the discrete orthogonality relation

C
.

x=0
w(x) C (a)

m (x) C
(a)
n (x)=ann! dmn (a > 0),(1.3)

where

w(x)=
e−aax

x!
.(1.4)

We also remark that they satisfy the following recursion relation

C (a)
n+1(x)=(x−n−a) C (a)

n (x)−anC
(a)
n−1(x).(1.5)

For further properties of these nonclassical polynomials, see [2] and [7].
We shall consider several cases as described below, which taken together

will result in asymptotic approximations uniformly valid for −. < x <..
In addition, our results will, in aggregate, be valid for

−{1−d} n [ a [ {1−d} n,(1.6)

where d is an arbitrary constant satisfying 0 < d < 1. In fact, for each case
the a interval of validity will be larger than (1.6) and indeed will be allowed
to be unbounded, either to +. or to −., according to the particular
range of x under consideration.

The difficulty in obtaining useful asymptotic approximations for the
Charlier, and other non-classical orthogonal polynomials (such as Meixner
and Pollaczek), is that they do not satisfy a second-order linear differential
equation with respect to the independent variable x. So far integral
methods have been employed, with x generally being very restricted.
Recently, for example, Goh [3] used an integral representation and
obtained approximations of Plancherel–Rotach type, with rather weak
error estimates. He considered seven x intervals, which taken together
cover part (but certainly not all) of the interval

en [ x [Mn (0 < e <M<.).(1.7)

We also mention that Maejima and Van Assche [4] obtained some
approximations for the case x negative.
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Rui and Wong [6] improved the results of [3], using a contour integral
representation and uniform asymptotics, which unified the results of [3] to
one x interval. They employed a suitable transformation of integration
variable, followed by integration by parts, to obtain an asymptotic
expansion of the form

C (a)
n (x)=n!ea+nqE (n−x)/2 3Jx−n(2n`E ) C

p−1

k=0

ak
nk(1.8)

+`E J −x−n(2n`E ) C
p−1

k=0

bk
nk+ep 4 ,

where E=E(x/n, n) and q=q(x/n, n) are solutions of a certain system of
nonlinear equations. They then showed that as nQ.

ep=Jx−n(2n`E ) O(n−p)+`E J −x−n(2n`E ) O(n
−p),(1.9)

for x satisfying (1.7), with a > 0 fixed.
We shall extend Rui and Wong’s results considerably further. First, we

consider three main cases, which taken together provide asymptotic
expansions which are uniformly valid for −. < x <., complete with
explicit error bounds. Our approach is quite different to previous work, in
that we show that C (a)

n (x) satisfies a differential equation in which a is the
independent variable, with x appearing as a parameter (see (1.12) below).
This allows us to employ powerful existing asymptotic results for differen-
tial equations. We shall obtain asymptotic expansions for numerically
satisfactory solutions of the differential equation, which are uniformly valid
for the parameter x lying in certain large intervals. As a by-product of our
approach, the parameter a will not be restricted to being fixed, or indeed
bounded. Furthermore, our method allows a to be complex, although for
conciseness we restrict a to being real in our final results. The methods and
results of this paper are intended for future studies on the asymptotic
distribution of zeros, as well as similar investigations on the Meixner and
Pollaczek polynomials.

It is worth emphasizing the importance of uniform asymptotics, as can be
seen by comparing the results of [3] with [6]. In the present paper,
uniform asymptotic approximations are obtained which are valid in full
neighborhoods of the singularities and the turning point, and also for the
cases where a turning point is permitted to be arbitrarily close to, or indeed
coincide with, a pole. This allows a, and more importantly x, to range over
large intervals. Since x is a parameter in the equations, alternative (non-
uniform) asymptotic methods can only yield a collection of weaker
approximations for various (essentially fixed) values of x.
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Generally, it is understood that the price paid for employing uniform
asymptotics is the requirement of fairly complicated transformations, as well as
the use of higher function approximants (in the present case Bessel functions,
although some of our approximations only involve elementary functions).
However, from the comments above we claim that in the study of non-classi-
cal polynomials the benefits of employing uniform asymptotic methods far
outweigh this. Moreover, Bessel functions (especially of real variables) are
now fairly easy to compute, and the transformed variables given below are
either explicitly given, or are readily computable via an implicit relation.

To derive the appropriate differential equation, we make use of the
following relationship with the Laguerre polynomials, or equivalently the
confluent hypergeometric function:

C (a)
n (x)=n!L (x−n)

n (a)=C(x+1)M(−n, x−n+1, a).(1.10)

Here (using the notation of [5, Chap. 7, Sect. 9])

M(−n, x−n+1, a)=C
n

s=0

(−n)s
C(x−n+1+s)

a s

s!
.(1.11)

From the confluent hypergeometric equation we then see that C (a)
n (x)

satisfies the second-order linear differential equation (in the parameter a)

a
d2y
da2+(1+x−n−a)

dy
da
+ny=0.(1.12)

We shall obtain our results via this equation with the first derivative
removed. Thus, on setting

y(a)=ea/2a (n−x−1)/2w(a)(1.13)

in (1.12) we obtain our desired form

d2w
da2=3

(x−n)2−1
4a2 −

n+x+1
2a

+
1
4
4 w.(1.14)

Equations (1.12) and (1.14) have a regular singularity at a=0, and an
irregular singularity at a=.. Our first task is to examine the behaviour of
C (a)

n (x) at these singularities, and to introduce other solutions of (1.12)
which are recessive at the singularities.

When x \ n the Charlier polynomial C (a)
n (x) is the recessive solution of

(1.12) at a=0: as aQ 0 (with x \ n)

C (a)
n (x)Q

C(x+1)
C(x−n+1)

,(1.15)

whereas all other independent solutions are unbounded as aQ 0 (x \ n).
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When x < n this is not always so: in this case the recessive solution at
a=0 is given by

N(−n, x−n+1, a)=an−xM(−x, n−x+1, a).(1.16)

We have as aQ 0

N(−n, x−n+1, a) ’
an−x

C(n−x+1)
,(1.17)

so that N(−n, x−n+1, a)Q 0 (for x < n). However, when 0 [ x < n and x
is an integer, then (1.15) no longer holds, but instead as aQ 0

C (a)
n (x) ’

n!
(n−x)!

(−a)n−x,(1.18)

with (1.17) still holding. Hence C (a)
n (x) and N(−n, x−n+1, a) are linearly

dependent in this case, namely

C (a)
n (x)=n!(−1)n−x N(−n, x−n+1, a).(1.19)

In summary, C (a)
n (x) is the recessive solution of (1.12) at a=0 when

x \ n, or when x is an integer with 0 [ x [ n. For all other values of x,
C (a)

n (x) is a dominant solution at a=0: in this Case (1.17) still holds,
whereas

C (a)
n (x)Q (−1)n

C(n−x)
C(−x)

(1.20)

as aQ 0 ( for fixed x ¥ (−., 0), or fixed non-integer x ¥ (0, n)).
For all values of x we can also use the fact that C (a)

n (x) is the recessive
solution at a=+.: from (1.1)

C (a)
n (x) ’ (−a)n(1.21)

as aQ., whereas all other independent solutions of (1.12) are exponen-
tially large in a as aQ+. ( for each fixed x in the interval −. < x <.).

The solution of (1.12) which is recessive at a=−. (arg(a)=p) is given
by

V(−n, x−n+1, a)=eaU(x+1, x−n+1, ae−pi),(1.22)
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where, for |arg(z)| < 1
2 p and Re p > 0,

U(p, q, z)=
1
C(p)

F
.

0
tp−1(1+t)q−p−1 e−zt dt.(1.23)

As aQ −.

V(−n, x−n+1, a) ’ ea(−a)−x−1,(1.24)

and so is exponentially small (compare (1.21)). Also, as aQ 0 with x < n

V(−n, x−n+1, a)Q
C(n−x)

n!
.(1.25)

Unlike N(−n, x−n+1, a), the solution V(−n, x−n+1, a) is independent
of C (a)

n (x) (as a function of a) for all fixed values of x.
We shall obtain asymptotic expansions for N(−n, x−n+1, a) and

V(−n, x−n+1, a) by matching them with asymptotic solutions of (1.14)
which are recessive at a=0 and a=−., respectively. Similarly, for certain
values of x, we shall obtain asymptotic expansions for C (a)

n (x) directly by
matching it with asymptotic solutions of (1.14) which are recessive at a=0,
or a=+.. For the remaining values of x we shall employ our asymptotic
expansions for N(−n, x−n+1, a) and V(−n, x−n+1, a) and appeal to
the connection formula

C (a)
n (x)=n!e−(n−x) piN(−n, x−n+1, a)+

n!(−1)n

C(−x)
V(−n, x−n+1, a).

(1.26)

With these considerations in mind, we shall consider three cases sepa-
rately. In order to describe these, we introduce the following parameters.
Let

u=n+1
2 ,(1.27)

a(x)=
x−n
u

,(1.28)

b(x)=−
2x+1
n−x

,(1.29)

s−(b)=1−b−`b2−2b ,(1.30)

t+(a)=2+a+2`1+a ,(1.31)
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and

v(x)== u
x+1

2

.(1.32)

In addition, for 0 [ b [ 1 define s0(b) ¥ (0, 1] implicitly by

S0−b ln(1−b−s0+S0)+ln 1 s
2
0+bs0+1−(s0+1) S0

s0
2(1.33)

=
1
2
(2−b) ln(2−b)−

1
2
b ln(b),

where

S0=`s
2
0−2s0+2bs0+1 .(1.34)

(It is understood that s0(0)=limbQ 0 s0(b)=1.) In the appendix we prove
that s0(b) is monotonically decreasing for 0 [ b [ 1. From this it follows
that

s0(1) [ s0(b) [ s0(0)=1,(1.35)

where s0(1)=0.6627... .
With these definitions, we illustrate the three cases in Table 1.
Here D is an arbitrary constant satisfying 3 [ D <., and we use d

generically as an arbitrary constant satisfying 0 < d < 1. From (1.7) we
observe that Rui and Wong [6] considered Case II (with a fixed).

We will show later that the a interval of validity of Case Ia is larger than
−{1−d} u [ a <., and the a intervals of validity of Cases Ib, Ic, II and
III are all larger than −. < a [ {1−d} u.

In Case I, which covers the x range −. < x [ d4u− 1
2 , the approximants

are elementary (exponential) functions. There are two turning points
involved (in the complex a plane), which restrict the region of validity of
the independent variable a. In Case Ia (1 < b < 2) the turning points are
complex conjugates and lie in the left half plane, and asymptotic expan-
sions are derived directly for C (a)

n (x) via a matching at a=+. (where it is
recessive). In Cases Ib (0 < b [ 1) and Ic the turning points lie in the right
half plane (complex conjugates for Case Ib, and real and positive for
Case Ic), and this prevents us from obtaining asymptotic expansions
directly for C (a)

n (x) via a matching at a=+.. Therefore asymptotic
expansions are instead derived directly for N(−n, x−n+1, a) and
V(−n, x−n+1, a), with the corresponding compound expansion for
C (a)

n (x) coming from the connection formula (1.26). Case Ic is very similar
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.
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−
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−
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.
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[
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(x
)
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D
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4 u
−

1 2
[
x
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n

−
.
<
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[
{t

+
(a
)−
d
}
u
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[
x
[
(1
+
D
)
n+

1 2
D

−
.
<
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[
{t

+
(a
)−
d
}
u
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x+
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D
[
a
(x
)
<
.
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+
D
)
n+
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[
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<
.
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.
<
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[
{1
−
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}(
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−
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(x
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to Case Ib, except that the two turning points are real as opposed to
complex, and subsequently the semi-infinite interval of validity of the
variable a differs slightly.

In Case II, which covers the x range d4u− 1
2 [ x [ (1+D) n+1

2 D, the
approximants are Bessel functions (for a > 0) or modified Bessel functions
(for a < 0). In this case the region of validity with respect to the variable a
includes a turning point and a double pole, and furthermore these two
points can coalesce for certain critical values of x. In Case IIa we see from
Table 1 that x < n and a=+. is not included in the interval of validity,
and as such N(−n, x−n+1, a) and V(−n, x−n+1, a) must be used as the
numerically satisfactory solutions, which can be identified directly with the
asymptotic solutions which are recessive at a=0 and a=−., respectively.
As in Cases Ib and Ic, the corresponding compound expansion for C (a)

n (x)
then comes from the connection formula (1.26). In Case IIb we see that
x \ n, which means that asymptotic expansions can be derived directly for
C (a)

n (x) via a matching of recessive solutions at a=0.
In Case III, which covers the x range (1+D) n+1

2 D [ x <., the
approximants are elementary (exponential) functions. There are two real
turning points, but they are bounded away from the interval
−. < a [ {1−d}(1−v(x))2 (x+1

2 ). Since x > n in this case, we are able to
obtain an asymptotic expansion for C (a)

n (x) from a direct matching of
recessive solutions at a=0.

Case I is covered in Sections 2 and 3, Case II in Sections 4 and 5, and
Case III in Sections 6 and 7. The main results are summarised in Section 8,
and some numerical examples are given in Section 9.

2. CASE I: PRELIMINARY TRANSFORMATIONS

In this case −. < a(x) [ −1+d4, which is equivalent to −. < x [
d4u− 1

2 (recall that u=n+1
2 ). We shall take n−x as the large asymptotic

parameter, and rescale the independent variable in (1.14) by

s=
a

n−x
.(2.1)

As a result we arrive at the differential equation

d2w
ds2

={(n−x)2 f̃(s)+g̃(s)} w,(2.2)

where

f̃(s)=
s2−2s+2bs+1

4s2
,(2.3)

CHARLIER POLYNOMIALS 101



and

g̃(s)=−
1
4s2

.(2.4)

Recall that b(x) is defined by (1.29). Now, for fixed n we see that b(x) is a
decreasing function of x in the range −. < x < n, and therefore for
−. < x [ d4u− 1

2 < n we deduce that

−
2d4

1−d4
[ b(x) < 2.(2.5)

For large n−x the zeros of f̃(s) are turning points of the differential
Eq. (2.2). From (2.3) we observe that there are two turning points, at
s=s ±(b), say. When 0 < b < 2 these are complex conjugates, located on
the unit circle |s|=1 at

s ±(b)=1−b±i`b(2−b) .(2.6)

When b [ 0 they are real and positive, located at

s ±(b)=1−b± `b2−2b .(2.7)

They are also real for b \ 2, but from (2.5) we see that this range will not
being considered here.

The two turning points coalesce at s=1 when b=0 (i.e., x=−1
2 ), and

they coalesce at s=−1 when bQ 2 (i.e., xQ −.). On account of the
position of these turning points in the s plane as b varies, we shall consider
the following three subcases.

• In Subcase Ia we consider the turning points lying on the unit
semi-circle |s|=1 in the left-half s plane. This occurs for 1 < b < 2, or
equivalently −. < x < −n−1. We shall show below that the position of
the turning points results in the asymptotic approximations being valid
for −{1−d} s0(2−b) [ s <. (i.e., −{1−d} s0(2−b)(n−x) [ a <.).

• In Subcase Ib the turning points lie on the unit semi-circle |s|=1 in
the right-half s plane. This occurs for 0 < b [ 1 (i.e., −n−1 [ x < − 1

2 ).
As a result the subsequent asymptotic expansions will be valid for
−. < s [ {1−d} s0(b) (i.e., −. < a [ {1−d} s0(b)(n−x)).

• In Subcase Ic the turning points are real and positive, located at
(2.7). This occurs for −2d4/(1−d4) [ b [ 0 (i.e., − 1

2 [ x [ d4u− 1
2 ). The

asymptotic expansions this time will be valid for −. < s [ {1−d} s−(b):
this ensures that s is bounded away from both real turning points.
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Before proceeding with the required transformations, we show that the
a interval of validity of Case Ia is larger than −{1−d} u [ a <., and the
a intervals of validity of Cases Ib and Ic are both larger than −. [

a{1−d} u.
Consider first Case Ib: numerical calculations indicate that s0(b) \

1− 1
2b for 0 [ b [ 1: see Fig. 1.

FIGURE 1

Now from (1.29) we see that s0(b) \ 1− 1
2b is equivalent to s0(b) \

u/(n−x). Therefore, for each fixed x under consideration, the a-interval of
validity −. < a [ {1−d} s0(b)(n−x) in Case Ib is larger than −. [ a <
{1−d} u. Similarly, for Case Ia (in which 1 < b < 2), we replace b by 2−b
in the inequality s0(b) \ 1− 1

2b, and this gives

s0(2−b) \
1
2
b=−

x+1
2

n−x
>

u
n−x

,(2.8)

since x < −n−1 in this case: consequently, we see that the a-interval of
validity −{1−d} s0(2−b)(n−x) [ a <. for Case Ia is larger than
−{1−d} u [ a <..

Finally, for Case Ic, we first observe that s−(b) is increasing for
−. < b < 0, since

ds−(b)
db

=
1−b−`b2−2b

`b2−2b
>
1−b−`b2−2b+1

`b2−2b
=0.(2.9)

Therefore, using the inequality −2d4/(1−d4) [ b [ 0 and (2.7), we find
that the smaller turning point lies in the interval

1−d2

1+d2
[ s−(b) [ 1.(2.10)
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On the other hand, since s=a/(n−x) and −. < x [ d4u− 1
2 , we see that

the condition −. < a [ {1−d} u implies that

−. < s [
{1−d} u
n−x

[
1

(1+d)(1+d2)
.(2.11)

Therefore from (2.10) and (2.11)

s−(b)−s \
d(1−d−d2)
(1+d)(1+d2)

> 0,(2.12)

provided that d > 0 and 1−d−d2 > 0, or equivalently 0 < d < 1
2(`5−1).

Thus a ¥ (−., {1−d} u] is sufficient to ensure that s ¥ (−., {1−d} s−(b)].
Let us return to Eq. (2.2). In order to obtain asymptotic solutions, we

make the Liouville transformation

t=F`f̃(s) ds=F
`s2−2s+2bs+1

2s
ds,(2.13)

and

W̃=f̃1/4(s) w.(2.14)

See [5, Chap. 10] for details. The resulting equation takes the form

d2W̃
dt2

={(n−x)2+k̃(t)} W̃,(2.15)

where

k̃(t)=
g̃(s)

f̃(s)
+
4f̃(s) f̃œ(s)−5f̃Œ2(s)

16f̃3(s)
.(2.16)

Using (2.3) and (2.4) we have explicitly

k̃(t)=
10(1−b) s−(15−14b+7b2) s2+8(1−b) s3−s4−2

(s2−2s+2bs+1)3
.(2.17)
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We shall define the branch of the s-t transformation according to the
value of b. For Cases Ib and Ic we integrate (2.13) to yield t=tb, where

tb=
1
2
`s2−2s+2bs+1−

1
2
b ln(1−b−s+`s2−2s+2bs+1 )(2.18)

+
1
2

ln 1 (s+1)`s
2−2s+2bs+1−s2−bs−1

s
2 .

Here and throughout the square roots are taken to be positive for real s.
The branches for the logarithms are chosen so that tb is real for arg(s)
=p (−. < s < 0).

For Case Ia (1 < b < 2), we prefer t to be real for 0 < s <.
(arg(s)=0), and so take the arbitrary integration constant in (2.13) with
this in mind. Thus explicit integration gives b=ta, where

ta=
1
2
`s2−2s+2bs+1−

1
2
b ln(1−b−s+`s2−2+2bs+1 )(2.19)

+
1
2

ln 1 s
2+bs+1−(s+1)`s2−2s+2bs+1

s
2 .

Thus for −. < s < 0 (arg(s)=p) we see that Im ta=
1
2 p. Note that

ta=tb+
1
2 pi for real s (arg(s)=0 or arg(s)=p).

When 0 < b < 2 the turning point in the upper half-plane s=s+(b)=
1−b+i`b(2−b) is mapped to

t+a (b)=
1
4(2−b) ln(2−b)− 1

4b ln(b)+1
4bpi (1 < b < 2),(2.20)

and

t+b (b)=
1
4(2−b) ln(2−b)− 1

4b ln(b)− 1
4(2−b) pi (0 [ b [ 1).(2.21)

When b [ 0 the (real) turning points at s=s ±(b)=1−b± `b2−2b are
mapped to

t−b (b)=
1
2 ln(2−b)− 1

4b ln(b2−2b)− 1
2 pi,(2.22)

and

t+b (b)=
1
2 ln(2−b)− 1

4b ln(b2−2b)− 1
2(1−b) pi,(2.23)

respectively. Note that (2.20)–(2.23) are branch points of the s-t transfor-
mation.
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Although we are primarily concerned with real values of s (equivalently
a), on account of the branch point of the transformations at s=0 we must
consider complex values of t. In particular, we consider 0 [ arg(s) [ p, and
for (2.18) introduce a branch cut parallel to the imaginary axis from
tb=t

+
b (b) to tb=Re t+b (b)− i.: then the branch of the right hand side of

(2.18) is defined as being real for arg(s)=p and by continuity elsewhere in
the cut tb plane. The map of the upper half s plane (0 [ arg(s) [ p) to the
tb plane is indicated in Fig. 2a, and 2b, with corresponding points indicated
by the same capital letters. In Fig. 2a the ray DBŒ emanating from the
branch point at t=t+b (b), parallel to the imaginary tb axis, is important as
it is a boundary for region of validity of the subsequent asymptotic expan-
sions. In the s plane the corresponding curve intersects the positive real axis
at the point labeled BŒ. This occurs at s0(b), where s=s0(b) is the real
solution of (2.18) when tb=Re t+b (b)−

1
2 pi. This is easily shown to be

equivalent to the earlier definition (1.33) of s0(b). One can then show from
(2.18) and the definition (1.33) that the point s=−s0(2−b) on the negative
real axis (arg(s)=p) corresponds to tb=Re t+b (b): this point is labelled B

in Figs. 2a and 2b.
Likewise, for the transformation (2.19) when 0 [ arg(s) [ p, we intro-

duce a branch cut parallel to the imaginary axis from ta=t
+
a (b) to

ta=t
+
a (b)+i., and take the branch of the right hand side of (2.19) to be

real for arg(s)=0, and by continuity elsewhere in the cut ta plane. The
Scharzian derivative k̃(t) is analytic in the cut ta and tb planes.

We next require the behaviour of t as s approaches the singularities of
the differential Eq. (2.2). Firstly, from (2.18) and (2.19) we find that

ta, b=
1
2 ln(12 |s|)+

1
2(2−b) ln(2−b)+1

2+O(s)(2.24)

as sQ 0+ (Case Ia) or sQ 0− (Cases Ib, c). Next, as sQ. (Case Ia) it is
straightforward to show that

ta=
1
2 s+

1
2(b−1) ln(2es)− 1

2b ln(b)+1
2(2−b) ln(2−b)+O(s−1),(2.25)

and as sQ −. (Cases Ib, c)

tb=
1
2 |s|+

1
2(1−b) ln(2e |s|)+O(s−1).(2.26)

3. CASE I: ASYMPTOTIC EXPANSIONS

We now apply Theorem 3.1 of [5, Chap. 10] (with n−x playing the role
of u in Olver’s Theorem) to Eq. (2.15). As a result we obtain the following
asymptotic solution which is recessive at t=−. (s=0)

W̃N, 1(n, x, t)=e(n−x) t 51+ C
N−1

j=1

Ãj(t)
(n−x) j
6+ẽN, 1(n, x, t).(3.1)
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FIG. 2. (a) tb plane. (b) s plane (0 [ arg(s) [ p).

Here Ã0(t)=1 and

Ãj+1(t)=−1
2 Ã

−

j(t)+
1
2 F
t

k̃(t) Ãj(t) dt+lj (j=0, 1, 2, ...).(3.2)

We choose the integration constants lj such that

lim
tQ −.
(sQ 0)

Ãj(t)=0 (j=1, 2, 3, ...).(3.3)
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In (3.1) we allow both t=ta and t=tb. The error term satisfies the
following bound

|ẽN, 1(n, x, t)| [ 2e (n−x) t exp 32V−., t(Ã1)
n−x
4V−., t(ÃN)
(n−x)N

,(3.4)

for certain values of t, as described later. The variational operator V is
defined as in [5, Chap. 1, Sect. 11]. Note that e−(n−x) tẽN, 1(n, x, t)Q 0 as
sQ 0 (tQ −.). We remark that all regions of validity are unbounded, on
account of the fact that k̃(t)=O(t−2) as tQ.: see (2.17), (2.24)–(2.26),
and [5, Chap. 10, Ex. 5.1].

Two more asymptotic solutions, which are recessive at s=±. (ta=.
and tb=., respectively), are furnished by

W̃ ±
N, 2(n, x, t)=e−(n−x) t 51+ C

N−1

j=1
(−1) j

Ãj(t)
(n−x) j
6+ẽ ±N, 2(n, x, t).(3.5)

This time the error terms are bounded by

|ẽ ±N, 2(n, x, t)| [ 2e−(n−x) t exp 32Vt,.(Ã1)
n−x
4Vt,.(ÃN)
(n−x)N

,(3.6)

where t=ta for the plus superscript, and t=tb for the minus superscript.
Note that for the plus superscript ta=+. corresponds to s=+., and
for the minus superscript tb=+. corresponds to s=−.. Thus
e (n−x) taẽ+N, 2(n, x, ta)Q 0 as sQ+., whereas e (n−x) tbẽ−N, 2(n, x, tb)Q 0 as
sQ −.. We emphasize that W̃+

N, 2(n, x, ta) and W̃−
N, 2(n, x, tb) are linearly

independent solutions of (2.15) for all values of x and n.
When t is real the variation paths in (3.4) and (3.6) are taken along the

real axis. However, when t is complex the variation paths must be chosen
so that as a point v (say) passes along the path from ±. to t, Re v must
be nondecreasing (for ẽN, 1(n, x, t)) or nonincreasing (for ẽ ±N, 2(n, x, t)). For
the bound (3.4) on ẽN, 1(n, x, t), the variation path from −. to all t
(corresponding to any s ¥ (−.,.)) meeting the monotonicity require-
ments is always possible, provided that the turning points s=s ±(b) are
bounded away from the real axis. However, if the turning points are close
to the real axis (at s=−1 in Case Ia, or at s=1 in Case Ib) the error
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FIG. 3. Variation path.

bound (3.4) is restricted to a semi-infinite interval. Thus for Case Ia the
bound (3.4) is valid for (at least) s ¥ [−1+d,.), and for Case Ib the
bound (3.4) is uniformly valid for (at least) s ¥ (−., 1−d].

Consider now the bound (3.6) when t is complex and s is real (so that
Im t=± 1

2 p). The simplest variation paths meeting the monotonicity
requirements consist of the union of two lines, the first along the real axis
from +. to Re t, and the second parallel to the imaginary axis from Re t
to t. As an illustration (Case Ib) of a variation path from +. to tb,
see Fig. 3. In this figure s > 0, and consequently tb is complex with
Im tb=−1

2 p.
For (3.6) the variation path, from +. to t (corresponding to a real

value of s) is only possible for restricted values of t. Consider first
ẽ−N, 2(n, x, tb). From Fig. 2a we see that the restriction on the location of tb
is −. < Re tb [ (1−d) Re t+b (b), on account of the branch point at
t=t+b (b). This leads to the restriction, for Case Ib (minus superscript),
that −. < s [ {1−d} s0(b) (equivalently −. < a [ {1−d} s0(b)(n−x))
for the bound (3.6) to hold if s is real. Similarly, for Case Ia (plus
superscript), the bound (3.6) holds for −{1−d} s0(2−b) [ s <.. As
discussed above, in Case Ic the bounds (3.4) and (3.6) both hold uniformly
for −. < s [ {1−d} s−(b).
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Subcase Ia. We now are in a position to derive asymptotic expansions
for the Charlier polynomials, as well as their companion solutions. First we
make the identification

C (a)
n (x)=K̃+

N, 2(n, x) e
a/2a (n−x)/2(3.7)

×{a2−2(n+x+1) a+(n−x)2}−1/4 W̃+
N, 2(n, x, ta),

where K̃+
N, 2(n, x) is independent of s (or a). This relationship holds since

both sides of (3.7) are solutions of (1.12) (see (1.13) and (2.14)) which are
recessive at a=.. The bound (3.6) on the asymptotic solution
W̃+

N, 2(n, x, ta) is uniformly valid for −{1−d} s0(2−b) [ s <.. This
allows us to compare both sides as aQ. (equivalently ta Q.). As a
result, on invoking (1.21), (2.1), (2.25) and (3.5), we find that

K̃+
N, 2(n, x)=(−1)n

|2x+1| (2x+1)/2 (2n+1)(2n+1)/2

{2e(n−x)} (n+x+1)/2(3.8)

×51+ C
N−1

j=1
(−1) j

ã+j (b)
(n−x) j
6−1

,

where

ã+j (b)= lim
ta Q.
(sQ.)

Ãj(ta).(3.9)

The asymptotic expansion (3.7) is uniformly valid for −. < x < −n−1
and −{1−d} s0(2−b)(n−x) [ a <..

We can compute the coefficients (3.9) by comparing both sides of (3.7) as
aQ 0. To do this we write U=n−x, then from (1.29) we have
x=−1

2{bU+1} and n=U{1− 1
2b}−

1
2 . Then we find from letting aQ 0 in

(3.7), and referring to (1.20), (2.1), (2.24), and (3.8) that (at least formally)

C(12{bU+1}) U
(2U−bU−1)/2

C(U) eU
12e
b
2bU/2

’ 1+C
.

j=1
(−1) j

ã+j (b)
U j ,(3.10)

as UQ.. Next, by employing Stirling’s formula for the Gamma functions,
the left hand side of (3.10) can be expanded in inverse powers of U. This
allows the calculation of the coefficients ã+j (b). For instance, the first three
are found to be

ã+1 (b)=
1+b
12b

,(3.11)

ã+2 (b)=
(1+b)2

288b2 ,(3.12)
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and

ã+3 (b)=
15b+15b2−139b3−1003

51840b3 .(3.13)

Subcase Ib. Next, we identify solutions which are recessive at a=0.
Thus, there exists a function K̃(n, x) which is independent of a, such that

N(−n, x−n+1, a)=e (n−x) piK̃(n, x) ea/2(−a) (n−x)/2

(3.14)

×{a2−2(n+x+1) a+(n−x)2}−1/4 W̃N, 1(n, x, tb).

By letting aQ 0− with arg(a)=p (equivalently tb Q −.) and invoking
(1.17), (2.1), (2.24), (3.1) and (3.3) we find that

K̃(n, x)=12
e
2 (n−x)/2 (n−x) (3n−x+2)/2

C(n−x+1)(2n+1)(2n+1)/2 .(3.15)

The expansion (3.14) is uniformly valid for −n−1 [ x < − 1
2 and (at least)

−. < s [ 1−d (i.e., −. < a [ {1−d}(n−x)). (If s+(b) is bounded away
from the real axis then (3.14) is instead uniformly valid for −. < a <.).
Since tb is complex for 0 < a [ {1−d}(n−x) (arg(a)=0) it is more con-
venient to work with real variables in this case. Thus, as an alternative
expansion when a is positive, we similarly find that

N(−n, x−n+1, a)=K̃(n, x) ea/2a (n−x)/2

(3.16)

×{a2−2(n+x+1) a+(n−x)2}−1/4 W̃N, 1(n, x, ta).

The expansion (3.16) can be used for −n−1 [ x < − 1
2 and 0 < a [

{1−d}(n−x).
Also for Case Ib, we match solutions which are recessive at a=−.

(arg(a)=p). Thus we arrive at

V(−n, x−n+1, a)=K̃−
N, 2(n, x) e

a/2(−a) (n−x)/2

(3.17)

×{a2−2(n+x+1) a+(n−x)2}−1/4 W̃−
N, 2(n, x, tb),
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where

K̃−
N, 2(n, x)=1

2e
n−x
2 (n+x+1)/2 51+ C

N−1

j=1
(−1) j

ã−
j (b)

(n−x) j
6−1

,(3.18)

in which

ã−
j (b)= lim

tb Q.
(sQ −.)

Ãj(tb).(3.19)

The function K̃−
N, 2(n, x) was found by letting aQ −. (equivalently

tb Q.) in (3.17) and using (1.24), (2.1), (2.26) and (3.5). Expansion (3.17)
is uniformly valid for −n−1 [ x < − 1

2 and −. < a [ {1−d} s0(b)(n−x).
Similar to Case Ia, we can compute the coefficients (3.19) by comparing

both sides of (3.17) at a=0, using (1.25). Thus, from letting aQ 0− in
(3.17) and following the steps that lead to (3.10), we arrive at

C({1− 1
2b} U+

1
2 )

C(U) U1/2
1 2
2−b
2U 1{2−b} U

2e
2bU/2

’ 1+C
.

j=1
(−1) j

ã−
j (b)
U j .

(3.20)

We observe that if we replace b by 2−b in the left hand side of (3.20), we
get the same expression as the left hand side of (3.10). From this we deduce
that, for each j,

ã−
j (b)=ã+j (2−b).(3.21)

For example, from (3.11) we find that ã−
1 (b)=

1
12(3−b)/(2−b).

Regardless of whether x is or is not an integer, asymptotic expansions
for the Charlier polynomials in Case Ib come from the above expansions
for N(−n, x−n+1, a) and V(−n, x−n+1, a) and the connection formula
(1.26).

Subcase Ic. This is very similar to Case Ib. We find that the expansions
(3.14), (3.16) and (3.17) still hold, but this time are uniformly valid for
− 1

2 [ x [ d4u− 1
2 and −. < a [ {1−d} s−(b)(n−x).

4. CASE II: PRELIMINARY TRANSFORMATIONS

We now consider the case where −1+d4 [ a(x) [ D (where a(x)=
(x−n)/u and u=n+1

2 ), or equivalently d4u− 1
2 [ x [ (1+D) n+1

2 D. We
shall take u as the large parameter, and introduce a new independent
variable t by

a=ut.(4.1)
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Then the differential equation (1.14) can be recast in the form

d2w
dt2

={u2f(a, t)+g(t)} w,(4.2)

where

g(t)=−
1
4t2
,(4.3)

and

f(a, t)=
t2−4t−2at+a2

4t2
=
(t−(a)− t)(t+(a)−t)

4t2
,(4.4)

in which

t ±(a)=2+a±2`1+a .(4.5)

Thus for large u the new differential equation (4.2) has turning points at
t=t ±(a). These turning points coalesce at t=1 when a(x)Q −1 (i.e., for
x=o(u)), but this situation does not occur in the present case. The other
critical situation, which is covered in the present case, occurs when
a(x)Q 0 (i.e., xQ n), since then the turning point t−(a) coalesces with the
double pole at t=0. However, t−(a) and t+(a) are bounded away from one
another, since for −1+d4 [ a(x) [ D we have from (4.5)

t+(a)− t−(a)=4`1+a \ 4d2.(4.6)

We also observe that

0 [ t−(a) [ 2+D−2`1+D <.,(4.7)

and

1 < t+(a) [ 2+D+2`1+D <.,(4.8)

and hence both turning points are bounded. Our results will be uniformly
valid for −. < t [ t+(a)−d. From (4.8) we see that a sufficient condition
for this to be true is −. < t [ 1−d (i.e., −. < a [ {1−d} u).

Note that t is bounded away from t+(a), but can coincide with t−(a), or
t=0, or both simultaneously. In order to obtain asymptotic approxima-
tions which are valid for a coalescing turning point and double pole, we
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apply the theory of [1]. Thus, from [1, Eq. (2.1)] the appropriate Liouville
transformation on (4.2) is given by

W=1dz
dt
21/2 w,(4.9)

and

1dz
dt
22=f(a, t) 1a

2(x)
4z2

−
1
4z
2−1

.(4.10)

This yields the new equation

d2W
dz2

=3u2 1a2(x)
4z2

−
1
4z
2− 1

4z2
+
k(a, z)
z
4W,(4.11)

where

k(a, z)=
z+4a2

16(z−a2)2
+
(z−a2)(5fŒ(a, t)−4fŒ(a, t) fœ(a, t)−16f(a, t) g(t))

64zf3(a, t)
.

(4.12)

From (4.3) and (4.4) an explicit expression for k(a, z) is given by

k(a, z)=
z+4a2

16(z−a2)2
+
(z−a2) t(t3+(2+3a)(2−a) t+2a2(2+a))

4z(t2−4t−2at+a2)3
.(4.13)

If we map t=t−(a) to z=a2, and t=0 to z=0, k(a, z) is analytic at z=0
and at z=a2.

When z is complex, or real with z < a2 (equivalently t < t−(a)), we
integrate (4.10) to give

F
a
2

z

(a2−y)1/2

y
dy=F

t −(a)

t

[(t−(a)−q)(t+(a)−q)]1/2

q
dq.(4.14)

The integrals can be explicitly evaluated to give the relation

a ln 3 2a
2−z+2a`a2−z

z
4−2`a2−z

(4.15)

=(2+a) ln 32+a−t−`(t
−(a)−t)(t+(a)− t)

2`1+a
4−`(t−(a)−t)(t+(a)− t)

+a ln 3a
2−at−2t+a`(t−(a)−t)(t+(a)− t)

2t`1+a
4 .
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The branches are defined such that z is real and lying in (−., a2) when t is
real and lying in (−., t−(a)), and by continuity for complex values of the
variables.

When z is real with z \ a2 (equivalently t \ t−(a)) the map is given by

F
z

a
2

(y−a2)1/2

y
dy=F

t

t −(a)

[(q−t−(a))(t+(a)−q)]1/2

q
dq,(4.16)

which on integration yields

2`z−a2−2a arccos 3 a
`z
4=`(t− t−(a))(t+(a)− t)(4.17)

+{2+a} arccos 32+a−t
`1+a
4

−a arccos 3 a
2−at−2t

2t`1+a
4 .

Here the inverse cosines are nonnegative, are equal to 0 for z=a2

(t=t−(a)), and are defined by continuity for other values of z and t. The
value of z corresponding to t=t+(a) is z=z+(a) say, where z+(a) > a2.
From (4.17) we see that for each a ¥ [−1,.) it is implicitly defined as the
unique positive solution of

`z+(a)−a2−a arccos 3 a

`z+(a)
4=p,(4.18)

where again the inverse cosine is nonnegative. So, for example,
z+(−1)=1, z+(0)=p2, and z+(1)=21.1907... . We note that z+(a) is an
increasing function of a ¥ [−1,.), since implicit differentiation of (4.18)
gives

dz+(a)
da

=
2z+(a)

`z+(a)−a2
arccos 3 a

`z+(a)
4 > 0.(4.19)

Next, from (4.15), we find the behaviour

t=
e

4(1+a)1+1/a z+O(z
2)(4.20)

as zQ 0. We shall use this in our identification of solutions of (4.11). It is
also straightforward to show from (4.15) that

t=−2`−z+1
2(2+a) ln(−4z)+2+a−(1+a) ln(1+a)+O(ln(z)/`z )

(4.21)
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as zQ −.. From this and (4.13) we observe that

k(a, z)=
(2+a) ln |z|
32 |z|3/2

+O(|z|−3/2),(4.22)

as zQ −..

5. CASE II: ASYMPTOTIC EXPANSIONS

From [1, Theorem 1] we obtain an asymptotic solution for z > 0 to
(4.11) of the form

W2N+1, 1(u, a, z)=z1/2Ju | a | (uz1/2) C
N

j=0

Aj(a, z)
u2j(5.1)

+
z

u
J −u | a | (uz

1/2) C
N−1

j=0

Bj(a, z)
u2j

+e2N+1, 1(u, a, z),

which is recessive at z=0 (t=0). The coefficients are given recursively by
A0(a, z)=1, and

Bj(a, z)=|z−a2|−1/2 F
z

a
2
|y−a2|−1/2 {yA'j (a, y)+A

−

j(a, y)−k(a, y) Aj(a, y)} dy

(5.2)

and

Aj(a, z)=−zB −j−1(a, z)+F k(a, z) Bj−1(a, z) dz.(5.3)

The integration constants associated with (5.3) can be arbitrarily chosen:
see the paragraph after Eq. (5.25) below. A bound on the error term
e2N+1, 1(u, a, z) is given by [1, Eq. (3.8)], and for our case is uniformly valid
for 0 < z [ z+(a)−d.

We note the behaviour

W2N+1, 1(u, a, z) ’
z (u |a|+1)/2

C(u |a|+1)
1u
2
2u |a| 51+C

N

j=1

Aj(a, 0)
u2j +|a| C

N−1

j=0

Bj(a, 0)
u2j+1
6 ,

(5.4)

as zQ 0.
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For z < 0 the real-valued asymptotic solution which is recessive at z=0
is given by

W2N+1, 3(u, a, z)=|z|1/2 Iu |a|(u |z|1/2) C
N

j=0

Aj(a, z)
u2j(5.5)

+
|z|
u
I −u |a|(u |z|

1/2) C
N−1

j=0

Bj(a, z)
u2j +e2N+1, 3(u, a, z).

Also for z < 0, the real-valued solution which is recessive at z=−. is
given by

W2N+1, 4(u, a, z)=|z|1/2 Ku |a|(u |z|1/2) C
N

j=0

Aj(a, z)
u2j(5.6)

+
|z|
u
K −u |a|(u |z|

1/2) C
N−1

j=0

Bj(a, z)
u2j

+e2N+1, 4(u, a, z).

Bounds on the error terms e2N+1, 3(u, a, z) and e2N+1, 4(u, a, z) are given by
[1, Eqs. (3.14) and (3.15)], and are uniformly valid for −. < z < 0.

It can be shown that as zQ 0− (with a ] 0)

W2N+1, 4(u, a, z) ’
1
2
|z| (1−u |a|)/2 12

u
2u |a| C(u |a|)

(5.7)

×51+C
N

j=1

Aj(a, 0)
u2j −|a| C

N−1

j=0

Bj(a, 0)
u2j+1 +d2N+1, 4(u, a)6 ,

where

d2N+1, 4(u, a)= lim
zQ 0−

{|z|1/2 Ku |a|(u |z|1/2)}−1 e2N+1, 4(u, a, z).(5.8)

To obtain an expansion for V(−n, x−n+1, a) for the case z > 0 (a > 0)
we must resort to a complex-valued asymptotic solution which is recessive
at z=−. (arg(z)=p). This is given by [1, Theorem 3]:

W (1)
2N+1(u, a, z)=z

1/2H (1)
u |a|(uz

1/2) C
N

j=0

Aj(a, z)
u2j(5.9)

+
z

u
H (1) −

u |a|(uz
1/2) C

N−1

j=0

Bj(a, z)
u2j

+e (1)2N+1(u, a, z).
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Here z is regarded as complex, and hence in place of (5.2) we must use

Bj(a, z)=(z−a2)−1/2 F
z

a
2
(y−a2)−1/2(5.10)

×{yA'j (a, y)+A
−

j(a, y)−k(a, y) Aj(a, y)} dy,

which are real for z real, and defined by continuity for complex z. The
Aj(a, z) are again given by (5.3) when z is complex. The error term
e (1)2N+1(u, a, z) is bounded by [1, Eq. (5.16)]. In the present case, the bound
is uniformly valid for 0 < z [ z+(a)−d (arg(z)=0), and for −. < z < 0
(arg(z)=p).

We will use later the fact that as zQ 0+

W (1)
2N+1(u, a, z) ’ −

iC(u |a|)
p
12
u
2u |a| z (1−u |a|)/2(5.11)

×51+C
N

j=1

Aj(a, 0)
u2j −|a| C

N−1

j=0

Bj(a, 0)
u2j+1 +d (1)2N+1(u, a)6 ,

where

d (1)2N+1(u, a)=lim
zQ 0

{z1/2H (1)
u |a|(uz

1/2)}−1 e (1)2N+1(u, a, z).(5.12)

Subcase IIa. Here d4u− 1
2 [ x < n. In this case we note that |a(x)|=

−a(x)=(n−x)/u. As in Cases Ib and Ic, we will obtain asymptotic expan-
sions for N(−n, x−n+1, a) (recessive at a=0) and V(−n, x−n+1, a)
(recessive at a=−.), and then appeal to the connection formula (1.26) to
obtain the corresponding (compound) asymptotic expansions for the
Charlier polynomials.

First, matching solutions which are recessive at z=0 (a=0), we find for
z > 0 (a > 0) that

N(−n, x−n+1, a)=K2N+1, 1(n, x) ea/2a(n−x)/2

(5.13)

×1 a2−z
(x−n)2+a2−2(x+n−1) a

21/4 z−1/2W2N+1, 1(u, a, z),

where (by using (1.17), (4.1), (4.20) and (5.4))

K2N+1, 1(n, x)=`u (1+a)x/2+1/4 1 e
u
2 (n−x)/2

(5.14)

×51+C
N

j=1

Aj(a, 0)
u2j +|a| C

N−1

j=0

Bj(a, 0)
u2j+1
6−1

.
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This expansion is uniformly valid for d4u− 1
2 [ x < n and 0 < z [ z+(a)−d

(i.e., 0 < a [ {t+(a)−d} u), where d is an arbitrary positive constant.
For z < 0 (a < 0 with arg(a)=p) we similarly find that

N(−n, x−n+1, a)(5.15)

=e(n−x) piK2N+1, 3(n, x) ea/2 |a| (n−x)/2

×1 a2−z
(x−n)2+a2−2(x+n+1) a

21/4 |z|−1/2 W2N+1, 3(u, a, z),

where K2N+1, 3(n, x)=K2N+1, 1(n, x). Also for z < 0 (a < 0 with arg(a)=p),
we find by matching solutions which are recessive at z=−. (a=−.)
that

V(−n, x−n+1, a)(5.16)

=K2N+1, 4(n, x) ea/2 |a| (n−x)/2

×1 a2−z
(x−n)2+a2−2(x+n+1) a

21/4 |z|−1/2 W2N+1, 4(u, a, z).

Now comparing both sides of (5.16) as aQ 0− , we find from (1.25), (4.1),
(4.20) and (5.7) that

K2N+1, 4(n, x)=
2`u

n!(1+a)x/2+1/4
1u
e
2 (n−x)/2

(5.17)

×51+C
N

j=1

Aj(a, 0)
u2j −|a| C

N−1

j=0

Bj(a, 0)
u2j+1 +d2N+1, 4(u, a)6

−1

,

in which d2N+1, 4(u, a) is given by (5.8). The expansions (5.15) and (5.16) are
both uniformly valid for d4u− 1

2 [ n and −. < z < 0 (−. < a < 0).
In order to obtain an expansion for V(−n, x−n+1, a) which is valid for
z > 0 (a > 0), we match it with the complex-valued asymptotic solution
(5.9) which is recessive at z=−. (arg(z)=p). Thus we can assert that

V(−n, x−n+1, a)(5.18)

=iK(1)
2N+1(n, x) e

a/2a (n−x)/2

×1 a2−z
(x−n)2+a2−2(x+n+1) a

21/4 z−1/2W (1)
2N+1(u, a, z),
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for some function K (1)
2N+1(n, x) which is independent of a. Here z is defined

as the complex-valued solution of (4.15). Now from (1.25), (4.1), (4.20),
and (5.11) we find from letting aQ 0+ in (5.18) that

K (1)
2N+1(n, x)=

p`u

n!(1+a)x/2+1/4
1u
e
2 (n−x)/2

(5.19)

×51+C
N

j=1

Aj(a, 0)
u2j −|a| C

N−1

j=0

Bj(a, 0)
u2j+1 +d (1)2N+1(u, a)6

−1

,

where d (1)2N+1(u, a) is given by (5.12). If we now restrict a and z to being
positive (with arg(a)=arg(z)=0), then (5.18) is uniformly valid for
d4u− 1

2 [ x < n and 0 < z [ z+(a)−d (i.e., 0 < a [ {t+(a)−d} u).
Asymptotic expansions for the Charlier polynomials now come from the

above expansions for N(−n, x−n+1, a) and V(−n, x−n+1, a) and the
connection formula (1.26). For a < 0 we use (5.15) and (5.16), and for a > 0
we use (5.13) and (5.18). We note that when a (equivalently t and z) is
positive, imaginary terms appear in the compound expansion for C (a)

n (x).
Of course C (a)

n (x) is real, and so we can drop the imaginary components in
the compound expansion (which necessarily must vanish identically).
Therefore, using (1.26), (5.15) and (5.16) we arrive at the compound
asymptotic expansion

C (a)
n (x)=n!ea/2a (n−x)/2 1 a2−z

(x−n)2+a2−2(x+n+1) a
21/4 z−1/2

(5.20)

×5cos{(n−x) p} K2N+1, 1(n, x) W2N+1, 3(u, a, z)

−
(−1)n

C(−x)
K (1)

2N+1(n, x)

×3z1/2Yn−x(uz1/2) C
N

j=0

Aj(a, z)
u2j +

z

u
Y −n−x(uz

1/2) C
N−1

j=0

Bj(a, z)
u2j

+Im e (1)2N+1(u, a, z)46 ,

which is uniformly valid for d4u− 1
2 [ x < n and 0 < z [ z+(a)−d (i.e.,

0 < a [ {t+(a)−d} u).
Let us analyse the vanishing of the imaginary component further. This

will give us a means of evaluating As(a, 0) and Bs(a, 0), which appear
in the formulas for K2N+1, 1(n, x) and K (1)

2N+1(n, x). The vanishing of the
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imaginary component in the compound expansion (5.20) occurs either for x
an integer, or for

3C(x+1)
p

K (1)
2N+1(n, x)−K2N+1, 1(n, x)4

(5.21)

×3z1/2Jn−x(uz1/2) C
N

j=0

Aj(a, z)
u2j +

z

u
J −n−x(uz

1/2) C
N−1

j=0

Bj(a, z)
u2j
4

=K2N+1, 1(n, x) e2N+1, 1(u, a, z)−
C(x+1)
p

K (1)
2N+1(n, x) Re e (1)2N+1(u, a, z),

when x is not an integer. Therefore, if we temporarily assume that x is not
an integer, we deduce that for each N

K2N+1, 1(n, x)=
C(x+1)
p

K (1)
2N+1(n, x) 31+O 1

1
u2N+1
24 ,(5.22)

since (5.21) must hold for all z ¥ (0, z+(a)−d]. Hence, since N is arbitrary,
we deduce from (5.14), (5.19) and (5.22) the formal relationship

(1+a)x/2+1/4 1 e
u
2 (n−x)/2 51+C

.

j=1

Aj(a, 0)
u2j +|a| C

.

j=0

Bj(a, 0)
u2j+1
6−1

(5.23)

’
C(x+1)

n!(1+a)x/2+1/4
1u
e
2 (n−x)/2 51+C

.

j=1

Aj(a, 0)
u2j −|a| C

.

j=0

Bj(a, 0)
u2j+1
6−1

.

Next, we write x=u+au− 1
2 and n=u− 1

2 , and arrive at the expansion

C(u+1
2 )

C(u+ua+1
2 )
1u+ua

e
2ua (1+a)u

(5.24)

’ 51+C
.

j=1

Aj(a, 0)
u2j −a C

.

j=0

Bj(a, 0)
uj+1
6 51+C

.

j=1

Aj(a, 0)
u2j +a C

.

j=0

Bj(a, 0)
u2j+1
6−1

,

(recalling that |a|=−a in this case). On appealing to Stirling’s formula, the
left hand side has the asymptotic expansion (for a not close to −1, as is the
case here)

C(u+1
2 )

C(u+ua+1
2 )
1u+ua

e
2ua (1+a)u

(5.25)

’ 1−
a

24(1+a) u
+

a2

1152(1+a)2 u2+
a(1003a2+3024a+3024)

414720(1+a)3 u3 +·· · .
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The restriction x being a non-integer can now be relaxed. Comparison of
the right hand sides of the expansions (5.24) and (5.25) allows us to
compute the Bj(a, 0) in terms of the Aj(a, 0), which themselves can be
arbitrarily chosen due to the integration constants in (5.3). For example, a
natural choice would be Aj(a, 0)=0 for j=1, 2, 3, ..., and then from
comparing (5.24) and (5.25) we find that

B0(a, 0)=
48

(1+a)
,(5.26)

B1(a, 0)=−
6048+6048a+2021a2

1658880(1+a)3
,(5.27)

B2(a, 0)=
7a2(3+3a+a2)
4423680(1+a)5

,(5.28)

and so on.

Subcase IIb. Here n [ x [ (1+D) n+1
2 D (and hence |a(x)|=a(x)).

In this case C (a)
n (x) is recessive at a=0, and consequently for z > 0 we

make the following direct identification with the corresponding asymptotic
solution (5.1)

C (a)
n (x)=K2N+1, 1(n, x) ea/2a−(x−n)/2(5.29)

×1 a2−z
(x−n)+a2−2(x+n+1) a

21/4 z−1/2W2N+1, 1(u, a, z).

Letting zQ 0 and using (1.15), (4.1), (4.20), and (5.4) we find that

K2N+1, 1(n, x)=
`u C(x+1)

(1+a)x/2+1/4
1 e
u
2 (x−n)/2

(5.30)

×51+C
N

j=1

Aj(a, 0)
u2j +a C

N−1

j=0

Bs(a, 0)
u2j+1
6−1

.

The expansion (5.29) is uniformly valid for n [ x [ (1+D) n+1
2 D and

0 < a [ {t+(a)−d} u.
Similarly, for z < 0 (a < 0) we obtain

C (a)
n (x)=K2N+1, 3(n, x) ea/2 |a|−(x−n)/2(5.31)

×1 a2−z
(x−n)2+a2−2(x+n+1) a

21/4 |z|−1/2 W2N+1, 3(u, a, z),
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where it is readily shown that K2N+1, 3(n, x)=K2N+1, 1(n, x). This asympto-
tic expansion is uniformly valid for n [ x [ (1+D) n+1

2 D and −. < a < 0.

6. CASE III: PRELIMINARY TRANSFORMATIONS

Here D [ a(x) <., which from (1.28) is seen to be equivalent to
(1+D) n+1

2 D [ x <., and so now we shall take x+1
2 as the large asymp-

totic parameter. We then, for convenience, introduce the parameter v(x) by
(1.32) above. In terms of a(x) we have

v(x)={1+a(x)}−1/2.(6.1)

The new independent variable is this time defined by

r=
a

x+1
2

.(6.2)

Then, we rewrite (1.14) in the form

d2w
dr2

=31x+1
2
22 f̂(r)+ĝ(r)4 w,(6.3)

where

f̂(r)=
((1−v)2−r)((1+v)2−r)

4r2
,(6.4)

and

ĝ(r)=−
1
4r2

.(6.5)

From (6.4) we observe two turning points, at r=(1±v)2. Now for
D [ a(x) <. we see from (6.1) that

0 < v(x) [
1

`1+D
.(6.6)

Therefore the two turning points are bounded, and can coalesce at r=1
(for v(x)Q 0, or equivalently n=o(x)). However, the smaller turning point
is bounded away from the pole at r=0, since

(1−v)2 \ 1+
1

1+D
−

2

`1+D
\

1
1+D

;(6.7)
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recall D \ 3. Our results will be uniformly valid for −. < r [ {1−d}(1−v)2.
Thus, the independent variable r is bounded away from the smaller (and
also, of course, the larger) turning point. The condition −. < a [ {1−d}
u is sufficient for this, since from (6.7) and x \ (1+D) u− 1

2 , we have

r=
a

x+1
2

[
1−d
1+D

[ {1−d}(1−v)2.(6.8)

Since there are no turning points in the interval under consideration, we
use the same general theory as in Case I, namely the Liouville–Green
(WKBJ) approximation. Therefore the appropriate Liouville transforma-
tion is again given by [5, Chap. 10], and to avoid confusion with the
notation of Case I, we let g denote the new independent variable of
the Liouville transformation. Therefore, from (6.4) and [5, Chap. 10,
Eq. (2.02)] we have

g=F
`((1−v)2−r)((1+v)2−r)

2r
dr,(6.9)

which on explicit integration yields

g=1
2`((1−v)

2−r)((1+v)2−r)+1
2 (1−v

2) ln |r|(6.10)

− 1
2 (1+v

2) ln{1+v2−r−`((1−v)2−r)((1+v)2−r)}

− 1
2 (1−v

2) ln{(1−v2)2−(1+v2) r

+(1−v2)`((1−v)2−r)((1+v)2−r)}

We consider the cases r > 0 and r < 0 separately. In the former case the
r interval (0, (1−v)2−d/(1+D)] is mapped 1–1 to the g interval
(−., g0], where

g0=g((1−v)2−d/(1+D))=−ln(2v)+O(d3/2).(6.11)

In the latter case the r interval (−., 0) is mapped 1–1 to the g interval
(−.,.). In both cases r=0 corresponds to g=−., and in the second
case r=−. corresponds to g=..

Now gQ −. as rQ 0, such that

g=1
2(1−v

2) ln |r|+1
2(1−v

2)−(1+v2) ln(v)(6.12)

− ln(2)−(1−v2) ln(1−v2)+O(r).
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Next, with the new dependent variable

Ŵ=f̂1/4(r) w,(6.13)

we arrive at

d2Ŵ
dg2

=31x+1
2
22+k̂(g)4 Ŵ,(6.14)

where k̃(g) is given by

k̂(g)={4r4−32(1+v2) r3+4(15−2v2+15v4) r2(6.15)

−40(1−v2 )2 (1+v2) r+8(1−v2)4}

×((1−v)2−r)−3 ((1+v)2−r)−3.

From (6.12) we note that k̂(g) is exponentially small (in g) as gQ −.
(rQ 0). It is also straightforward to show that k̂(g)=O(g−2) as gQ.
(rQ −.).

7. CASE III: ASYMPTOTIC EXPANSIONS

From [5, Chap. 10, Theorem 3.1] we obtain the asymptotic solution

ŴN, 1(x, g)=e(x+1/2) g 51+ C
N−1

j=1

Âj(g)
(x+1

2)
j
6+êN, 1(x, g),(7.1)

which is recessive as gQ −. (i.e., rQ 0, or aQ 0). The coefficients are
given recursively by

Âj+1(g)=−1
2 Â

−

j(g)+
1
2 F
g

−.
k̂(y) Âj(y) dy (j=0, 1, 2, ...),(7.2)

with Â0(g)=1. The lower integration limit is chosen so that

lim
gQ −.

Âj(g)=0 (j=1, 2, 3...).(7.3)

The error term satisfies the bound

|êN, 1(x, n)| [ 2e (x+1/2) g exp 32V−., g(Â1)
x+1

2

4V−., g(ÂN)
(x+1

2)
N ,(7.4)

which holds for g ¥ (−., g0] when r < 0, and for g ¥ (−.,.) when r < 0.
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We now match solutions which are recessive at g=−. and r=0, and as
such we have

C (a)
n (x)=K̂(n, x) ea/2a−(1+x−n)/2{4f̂(r)}−1/4 ŴN, 1(x, g),(7.5)

where K̂(n, x) (which is independent of r and a) can conveniently be
determined by

K̂(n, x)= lim
gQ −.
(rQ 0)

e−a/2a (1+x−n)/2{4f̂(r)}1/4 C (a)
n (x)

ŴN, 1(x, g)
.(7.6)

Hence from (1.15), (3.2), (6.4), (6.12), (7.1) and (7.3) we find that

K̂(n, x)=
C(x+1)(n+1

2)
(x+n+1)/2 (x−n)x−n+1/2

C(x−n+1) e (x−n)/2
1 2
x+1

2

2x+1/2

.(7.7)

In terms of the original variables, the expansion (7.5) is uniformly valid for
(1+D) n+1

2 D [ x <. and 0 < a [ {1−d}(1−v(x))2 (x+1
2 ).

The case −. < a [ 0 is treated similarly, and we find that (7.5) also
holds uniformly for (1+D) n+1

2 D [ x <. and −. < a < 0.

8. SUMMARY OF MAIN RESULTS

Case I. This case provides asymptotic expansions for −. < x [ d4u− 1
2 ,

where u=n+1
2 . Let s=a/(n−x) and b(x)=−(2x+1)/(n−x), and define

Liouville variables ta and tb by (2.18) and (2.19). Then for each nonnegative
integer N and for t=ta or t=tb, the following Liouville–Green asymptotic
expansion

W̃N, 1(n, x, t)=e(n−x) t 51+ C
N−1

j=1

Ãj(t)
(n−x) j
6+ẽN, 1(n, x, t)(8.1)

is recessive at a=0 (t=ta=tb=−.), and the following asymptotic
expansions

W̃ ±
N, 2(n, x, t)=e−(n−x) t 51+ C

N−1

j=1
(−1) j

Ãj(t)
(n−x) j
6+ẽ ±N, 2(n, x, t)(8.2)

are recessive at a=+. (ta=+., for the plus superscript) and a=−.
(tb=+., for the minus superscript). The coefficients Ãj(t) are defined
recursively by (3.2) (with (2.17) and (3.3)), and the error terms ẽN, 1(n, x, t)
and ẽ ±N, 2(n, x, t) satisfy the bounds (3.4) and (3.6), respectively.
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Subcase Ia. The following asymptotic expansion is uniformly valid for
−. < x < −n−1 and −{1−d} s0(2−b)(n−x) [ a <., where s0(b) is
implicitly defined by (1.33) for 0 [ b [ 1,

C (a)
n (x)=K̃+

N, 2(n, x) e
a/2a (n−x)/2(8.3)

×{a2−2(n+x+1) a+(n−x)2}−1/4 W̃+
N, 2(n, x, ta),

with

K̃+
N, 2(n, x)=(−1)n

|2x+1| (2x+1)/2 (2n+1)(2n+1)/2

{2e(n−x)} (n+x+1)/2
51+ C

N−1

j=1
(−1) j

ã+j (b)
(n−x) j
6−1

,

(8.4)

and where the coefficients ã+j (b) are those that appear in the formal
expansion

C(12{bU+1}) U
(2U−bU−1)/2

C(U) eU
12e
b
2bU/2

’ 1+C
.

j=1
(−1) j

ã+j (b)
U j .(8.5)

Subcase Ib. The following asymptotic expansion is uniformly valid for
−n−1 [ x < − 1

2 and −. < a [ {1−d} s0(b)(n−x)

C (a)
n (x)=n!ea/2(−a) (n−x)/2 {a2−2(n+x+1)+(n−x)2}−1/4(8.6)

×5e (n−x) piK̃(n, x) W̃N, 1(n, x, tb)

+
(−1)n

C(−x)
K̃−

N, 2(n, x) W̃
−
N, 2(n, x, tb)6 ,

where

K̃(n, x)=12
e
2 (n−x)/2 (n−x) (3n−x+2)/2

C(n−x+1)(2n+1)(2n+1)/2 ,(8.7)

and

K̃−
N, 2(n, x)=1

2e
n−x
2 (n+x+1)/2 51+ C

N−1

j=1
(−1) j

ã+j (2−b)
(n−x) j
6−1

.(8.8)

Subcase Ic. The expansion (8.6) is also uniformly valid for − 1
2 [ x [

d4u− 1
2 , but this time for −. < a [ {1−d} s−(b)(n−x), where s−(b)=

1−b−`b 2−2b .
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Case II. This case provides asymptotic expansions of d4u− 1
2 [ x [

(1+D) n+1
2 D. Let t=a/u and a(x)=(x−n)/u. Then we introduce a new

variable z by (4.14)–(4.17). Asymptotic expansions, in terms of Bessel
functions, are given by

W2N+1, p(u, a, z)=z1/2C
(p)
|x−n|
11n+1

2
2 z1/22 C

N

j=0

Aj(a, z)
(n+1

2)
2j(8.9)

+
z

n+1
2

C (p)−
|x−n|
11n+1

2
2 z1/22 C

N−1

j=0

Bj(a, z)
(n+1

2)
2j

+e2N+1, p(u, a, z) (p=1, 2, 3, 4),

where C (1)
v (x)=Jv(x), C (2)

v (x)=Yv(x), C (3)
v (x)=Iv(x), C (4)

v (x)=Kv(x).
The error terms e2N+1, 1(u, a, z), e2N+1, 3(u, a, z), and e2N+1, 4(u, a, z) satisfy
the bounds (3.8), (3.14) and (3.15), respectively, of [1]. The error term
eN+1, 2(u, a, z)=Im e (1)2N+1(u, a, z), where e (1)2N+1(u, a, z) satisfies the bound
[1, Eq. (5.16)].

The coefficients Aj(a, z) and Bj(a, z) are defined via (4.13), (5.2) and
(5.3), and we take the integration constants in (5.3) so that Aj(a, 0)=0 for
j=1, 2, 3... .

Subcase IIa. The following asymptotic expansion is uniformly valid for
d4u− 1

2 [ x < n and 0 < a [ {t+(a)−d} u, where t+(a)=2+a+2`1+a :

C (a)
n (x)=n!ea/2a (n−x)/2 1 a2−z

(x−n)2+a2−2(x+n+1) a
21/4 z−1/2(8.10)

×[cos{(n−x) p}K2N+1, 1(n, x) W2N+1, 1(u, a, z)

−
C(x+1) sin{(n−x) p}

p
K (1)

2N+1(n, x) W2N+1, 2(u, a, z)],

where

K2N+1, 1(n, x)==n+
1
2
(1+a)x/2+1/4 1 2e

2n+1
2 (n−x)/2

(8.11)

×51+(n−x) C
N−1

j=0

Bj(a, 0)
(n+1

2 )
2j+2
6−1

,

and

K (1)
2N+1(n, x)=

p`n+1
2

n!(1+a)x/2+1/4
12n+1

2e
2 (n−x)/2

(8.12)

×51−(n−x) C
N−1

j=0

Bj(a, 0)
(n+1

2 )
2j+2+d

(1)
2N+1(u, a)6

−1

.
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In (8.12) the term d (1)2N+1(u, a) is given by (5.12), and is O(u−2N−1). The
coefficients Bj(a, 0) (j=0, 1, 2, ...) can be calculated in turn via the formal
identity

C(u+1
2 )

C(u+ua+1
2 )
1u+ua

e
2ua (1+a)u(8.13)

’ 51−a C
.

j=0

Bj(a, 0)
u2j+1
651+a C

.

j=0

Bj(a, 0)
u2j+1
6−1

.

The following asymptotic expansion is uniformly valid for d4u− 1
2 [ x < n

and −. < a < 0

C (a)
n (x)=n!ea/2 |a| (n−x)/2 1 a2−z

(x−n)2+a2−2(x+n+1) a
21/4 |z|−1/2(8.14)

×5K2N+1, 3(n, x) W2N+1, 3(u, a, z)

+
(−1)n

C(−x)
K2N+1, 4(n, x) W2N+1, 4(u, a, z)6 ,

where K2N+1, 3(n, x)=K2N+1, 1(n, x) and

K2N+1, 4(n, x)=
2`n+1

2

n!(1+a)x/2+1/4
12n+1

2e
2 (n−x)/2

(8.15)

×51−(n−x) C
N−1

j=0

Bj(a, 0)
(n+1

2 )
2j+2+d2N+1, 4(u, a)6

−1

.

In (8.15) the term d2N+1, 4(u, a) is given by (5.8), and is O(u−2N−1).

Subcase IIb. The following asymptotic expansions are uniformly valid
for n [ x [ (1+D) n+1

2 D and −. < a [ {t+(a)−d} u

C (a)
n (x)=K2N+1, 1(n, x) ea/2 |a|−(x−n)/2

(8.16)

×1 a2−z
(x−n)2+a2−2(x+n+1) a

21/4 |z|−1/2 W2N+1, p(u, a, z),
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with p=1 for a > 0 and p=3 for a < 0. Here

K2N+1, 1(n, x)=
`n+1

2 C(x+1)

(1+a)x/2+1/4
1 2e
2n+1
2 (x−n)/2

(8.17)

×51+(x−n) C
N−1

j=0

Bj(a, 0)
(n+1

2 )
2j+2
6−1

.

Case III. This case provides asymptotic expansions for (1+D) n+1
2 D [

x <.. Let r=a/(x+1
2 ) and v(x)=`(n+1

2 )/(x+
1
2 ) . Then define a

Liouville variable g by (6.10).
The following asymptotic expansion is uniformly valid for (1+D) n+

1
2 D [ x <. and −. < a [ {1−d}(1−v(x))2 (x+1

2 )

C (a)
n (x)=K̂(n, x) ea/2a−(x−n)/2{(x−n)2+a2−2(x+n+1) a}−1/4(8.18)

×3e (x+1/2) g 51+ C
N−1

j=1

Âj(g)
(x+1

2)
j
6+êN, 1(x, g)4,

where Âj(g) (j=1, 2, 3, ...) are defined recursively by (6.15) and (7.2),
êN, 1(x, g) is bounded by (7.4), and

K̂(n, x)=
C(x+1)(n+1

2)
(x+n+1)/2 (x−n)x−n+1/2

C(x−n+1) e (x−n)/2
1 2
x+1

2

2x+1/2

.(8.19)

9. NUMERICAL CALCULATIONS

In Table 2 exact and approximate values of C (a)
n (x) are given, for n=30,

a=10, and various values of x. For simplicity just one term (N=0) is
taken for each of the asymptotic expansions. Thus the relative errors are
O{(n−x)−1}, O{n−1} and O{x−1}, for Cases I, II and III, respectively.

The apparent discrepancy between the exact value and the Subcase Ic
approximation when x=1 is due to this x value being close to a zero of
C (10)

30 (x) (which occurs at x=1.000118...), coupled with the very large
amplitude of oscillation of C (10)

30 (x) in the vicinity of x=1. Subcase Ic
does however break down near x=5.5. This is because s−(b)(n−x)=
9.4445... for x=5.5 and n=30, and this is close to the fixed
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TABLE 2

Subcase Ia
x C (10)

30 (x) Eq.=(8.3)

-1000000 1.0007353E+180 1.0007351E+180
-10000 1.0761132E+120 1.0760998E+120
-1000 2.0564092E+90 2.0561661E+90
-100 5.0967674E+62 5.0921906E+62 Subcase Ib,c
-50 5.6576204E+55 5.6484443E+55 Eq. (8.6)
-31 3.7697641E+51 3.7603029E+51 3.7603E+51

-20 1.7686791E+48 1.7633E+48
-10 9.5270670E+43 94831E+43
-5 6.9328090E+40 Subcase IIa 6.8832E+40
-1 5.8425826E+36 Eq. (810) 5.7600E+36

-0.5 7.3995373E+35 7.3760E+35 7.2804E+35
0 1.0000000E+30 1.0022E+30 1.0118E+30
1 -2.0000000E+30 -2.0039E+30 2.0337E+30

1.5 1.7756442E+33 1.7714E+33 1.7107E+33
5.5 1.5625004E+31 1.5605E+31 5.9718E+30
10 -8.3780768E+30 -8.3866E+30

20.5 -6.6880619E+31 -6.6856E+31 Subcase IIb
25 -3.8389361E+32 -3.8377E+32 Eq. (8.16)
30 -3.3731664E+33 -3.3696E+33 -3.3696E+33

40 -2.9453149E+36 -2.9459E+36
50 5.8124448E+39 5.8141E+39
60 1.6708355E+43 1.6704E+43
70 4.7094723E+47 4.7159E+47
80 1.7733979E+51 1.7738E+51
90 6.0595887E+53 6.0605E+53
100 6.8477444E+55 Case III 6.8486E+55
110 3.8030198E+57 Eq. (8.18) 3.8034E+57

121.5 2.0731825E+59 2.0766321E+59 2.0733E+59

130 2.8767120E+60 2.8802952E+60
140 4.7973025E+61 4.8017594E+61
150 6.2327099E+62 6.2371969E+62
200 1.7648248E+67 1.7653230E+67
300 1.4835505E+73 1.4836876E+73
1000 4.7238924E+89 4.7239196E+89
10000 9.2900121E+119 9.2900126E+119

1000000 9.9926526E+179 9926526E+179

value a=10 under consideration; recall that Subcase Ic is valid for
−. < a [ {1−d} s−(b)(n−x). It is interesting to note that the Subcase IIa
approximation remains good even for small values of x: this is because we
have only taken one term in our expansion, and hence none of the coeffi-
cients Bj(a, 0) appear (which become unbounded as a(x)Q −1, i.e., for
nQ. and bounded x).
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10. APPENDIX

We prove the montonicity of s0(b) by the following theorem.

Theorem A.1. The function s0(b), which is implicitly defined by (1.33),
satisfies ds0/db [ 0 for 0 [ b [ 1.

If we differentiate (1.33) with respect to b, and solve for ds0/db, we find
after some simplification that

ds0
db
=−

s0{ln(b(2−b))−2 ln(1−b−s0+S0)}
2S0

,(A.1)

where S0(b) is defined by (1.34). Therefore the theorem follows immedi-
ately from the following result.

Lemma A.2.

ln(b(2−b))−2 ln(1−b−s0+S0) \ 0,(A.2)

for 0 < b [ 1, where s0(b) ¥ (0, 1] satisfies (1.33).

Proof. The complication in proving this is that s0(b) is not explicitly
given. We cannot prove the result by simply replacing s0(b) by an arbitrary
s ¥ (0, 1], since the left hand side of the inequality is negative if
0 < s0(b) < 1−b (which a posteriori is false). Instead, we first appeal to
(1.33) to obtain the alternative representation

ln(b(2−b))−2 ln(1−b−s0+S0)=
2
b
L(b, s0),(A.3)

where

L(b, s)=ln 1 s(2−b)
s2+bs+1−(s+1) S(s)

2 −S(s),(A.4)

in which

S(s)=`s2−2s+2bs+1 .(A.5)

We shall show that L(b, s) is nonnegative for all s ¥ (0, 1]. Now, for fixed
b, differentiation with respect to s leads to

“

“s
L(b, s)=−

(1−s)2+bs
sS(s)

,(A.6)
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which is clearly negative for 0 < b [ 1 and 0 < s [ 1. Hence for these
ranges of b and s

L(b, s) \ L(b, 1)=ln 12+`2b
2−`2b
2−`2b .(A.7)

To show that the right hand side of (A.7) is positive, we first observe that it
is increasing for 0 < b [ 1:

d
db
3 ln 12+`2b

2−`2b
2−`2b4= `b

`2 (2−b)
> 0.(A.8)

Thus

L(b, s) \ L(b, 1) \ L(0, 1)=0,(A.9)

for 0 < b [ 1 and 0 < s [ 1. Lemma A2 now follows from (A.3) and (A.9).

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under Grant DMS-
9970489.

REFERENCES

1. W. G. C. Boyd and T. M. Dunster, Uniform asymptotic solutions of a class of second-
order linear differential equations having a turning point and a regular singularity, with an
application to Legendre functions, SIAM J. Math. Anal. 17 (1986), 422–450.

2. T. S. Chihara, ‘‘An Introduction to Orthogonal Polynomials,’’ Gordon and Breach, New
York, 1978.

3. W. M. Y. Goh, Plancherel–Rotach asymptotics for the Charlier polynomials, Constr.
Approx. 14 (1998), 151–168.

4. M. Maejima and W. Van Assche, Probabilistic proofs of asymptotic formulas for some
classical polynomials, Math. Proc. Cambridge Philos. Soc. 97 (1985), 499–510.

5. F. W. J. Olver, ‘‘Asymptotics and Special Functions,’’ Academic Press, New York, 1974,
reprinted by A. K. Peters, Wellesley, 1997.

6. B. Rui and R. Wong, Uniform asymptotic expansion of Charlier polynomials, Methods
Appl. Anal. 1 (1994), 109–134.
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